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Computationally efficient guidance is challenging for stationkeeping applications in nonlinear
dynamical regions, where a potential onboard control method must satisfy mission requirements
on accuracy, computational footprint, and propellant consumption. Furthermore, determining
maneuver locations and frequencies is often accomplished heuristically, with relatively few
analytical or numerical tools available to aid in the process. Reinforcement learning is leveraged
in this investigation to address both the timing and the control components for low-thrust
stationkeeping problems, producing neural network controllers that successfully maintain
cislunar periodic orbits without a-priori knowledge of effective maneuver placement schemes.
Practical examples demonstrate a neural network’s ability to ‘learn’ a suitable maneuver
schedule for both machine learning and crossing control schemes alike, resulting in effective
maneuver patterns that balance coasting time against propellant consumption, while nevertheless
ensuring mission success.

I. Introduction

To establish a sustained human and robotic presence in cislunar and deep space, rapid onboard maneuver planningfor orbit maintenance is an essential technology. As applied in this investigation, Reinforcement Learning (RL),
a subset of machine learning, is demonstrated as an effective tool for determining both the timing and the control
states for low-thrust stationkeeping maneuvers in these challenging regions of space. This approach builds on previous
contributions for training a computationally efficient closed-loop controller and demonstrates a novel method for
encoding the timing and the location of future maneuvers as learnable neural network parameters, reducing the need for
a-priori knowledge of maneuver frequency and placement. This approach automatically produces maneuver patterns for
any given controller, rendering the learning process for maneuver timing applicable to a broad range of control methods.
Stationkeeping, at a high-level, is comprised of two distinct tasks: control and timing. Depending on mission

objectives, previous research efforts suggest a wide variety of orbit maintenance control approaches, including recent
investigations that leverage RL to train a neural network controller [1–3]. Once a control approach is selected, an
additional challenge is determining suitable locations along the orbit to implement the maneuvers. Too few maneuvers
may result in deviation from the reference orbit and/or higher stationkeeping costs, while too many maneuvers adds
operational complexity, and may interrupt science objectives. This investigation first demonstrates a simple and flexible
training technique for producing a neural network stationkeeping controller and subsequently details a novel approach
for ‘learning’ a suitable maneuver schedule. Separating the planning and control tasks renders the maneuver placement
approach applicable to any control method (neural network-based or otherwise) and enables the ‘timing’ neural network
to uncover dynamical regions in the space that lead to low-cost stationkeeping solutions.
For the control task, many current stationkeeping techniques in multi-body dynamical regimes lack global

applicability, instead relying on specific characteristics of the underlying problem to construct propellant-efficient
maneuvers. For example, Floquet mode control approaches leverage stability information to compute maneuvers that
offset the orbit’s unstable modes [4]. Alternatively, crossing control methods target certain conditions at crossings of an
orbit’s plane of symmetry [5]. While powerful and effective, these approaches are often application-specific, and not
easily generalized to a wider range of mission scenarios and spacecraft. Alternatively, modern RL techniques offer
general approaches to train a neural network controller without direct knowledge of the dynamical environment. Neural
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networks offer an appealing computationally efficient guidance strategy that is potentially suitable for onboard use.
When trained via RL, the separation between the agent and the environment (i.e., the controller and the controlled
system) provides significant flexibility for spacecraft guidance by removing the reliance on underlying assumptions
and characteristics of the dynamical model and mission scenario. Furthermore, the separation between training and
closed-loop evaluation produces a computationally efficient controller with attractive onboard characteristics, requiring
neither iteration nor numerical integration to operate effectively.
Reinforcement learning has recently emerged as a promising tool in spaceflight guidance applications with potential

for onboard use. Previous RL applications are broadly categorized based on the phase of flight. Notably productive areas
of RL research are landing problems [6–8] and small body operations [9, 10]. In multi-body problems, RL is applied to
transfer guidance along a known reference [11], and to transfer design between multi-body orbits by Das-Stuart et al.
[12], Sullivan et al. [13, 14], and Federici et al. [15]. Select additional machine learning-based spaceflight control
applications are compiled by Shirobokov et al. [16].
Several previous investigations demonstrate the feasibility of RL as an encouraging novel approach for closed-loop

guidance near multi-body libration points. In particular, several authors employ RL to compute stationkeeping maneuvers.
Guzzetti first leverages 𝑄-Learning with a discretized state and action space for orbital maintenance of an 𝐿1-Lyapunov
orbit in the Earth-Moon system [3]. Alternatively, several authors employ recently developed RL techniques to access
and manipulate continuous dynamical environments. Applied to Sun-Earth halo orbits, Molnar applies a Soft Actor
Critic (SAC) approach to augment Floquet mode control applied to stationkeeping maneuvers [2], and Bonasera et al.
employ Proximal Policy Optimization (PPO) to compute corrective maneuvers that offset momentum unloads in both a
Sun-Earth gravitational system and a higher fidelity ephemeris force model [1] . In low-thrust applications, LaFarge et
al. apply PPO to produce a controller that maintains both transfers and periodic orbits in the Earth-Moon system [11].
While each previous RL-enabled stationkeeping strategy demonstrates promising results, the training processes

often incorporate domain-specific knowledge, limiting their applicability in problems that lack specific characteristics.
This investigation builds on prior research by removing domain-specific knowledge from the training process, creating a
flexible approach that is more easily applied to new mission scenarios. In particular, previous RL training methods rely
on application-specific plane crossing geometries [1, 3] or stability [2] information. The current work introduces a
generalization of the training approach to avoid orbit-specific characteristics, producing an RL training algorithm that is
applicable to a wider variety of problems, and successfully maintains challenging orbits without relying on relative state
error minimization in the training process. For many mission applications, such error minimization is not necessary, and
extra propellant is expended to correct what may be an acceptable amount of error. Current multi-body stationkeeping
strategies, such as crossing control [5] and Floquet mode [4] methods, achieve low-cost maneuvers by employing
alternative approaches that do not rely on minimization strategies as observed in traditional optimal control schemes.

II. Problem Formulation
The proposed RL stationkeeping techniques are evaluated in the Earth-Moon neighborhood. In particular, the

Circular Restricted Three-Body Problem (CR3BP) is a useful environment for preliminary evaluation because it both
represents a challenging region of space that is relevant to upcoming missions while still admitting truly periodic
solutions. Additionally, low-thrust propulsion is included to demonstrate algorithmic performance despite limited
control authority and pronounced nonlinearities.

A. Dynamical Model
The CR3BP is a model for the motion of an infinitesimal mass 𝑃3 moving under the influence of two celestial bodies.

In this model, two spherically symmetric gravitational bodies, 𝑃1 and 𝑃2 form the primary system as they move in
circular orbits about their common barycenter, 𝐵; 𝑃3 moves freely with respect to the barycenter, as depicted in Fig. 1.
The relative size of the primaries is represented by the mass ratio 𝜇 = 𝑀2/(𝑀1 + 𝑀2), with 𝑀1 assumed to be the larger
of the two bodies. Furthermore, this model assumes that the mass of 𝑃3 is infinitesimal compared to the masses of
the primary bodies and, thus, does not influence the motion of the primary system. The position and velocity of 𝑃3
with respect to 𝐵, denoted 𝑟3𝑟3𝑟3, 𝑣3𝑣3𝑣3, respectively, comprise the vector 𝜌𝜌𝜌 = [𝑥 𝑦 𝑧 ¤𝑥 ¤𝑦 ¤𝑧] 𝑇 . The vector components are
propagated with respect to the system barycenter, 𝐵, in a rotating reference frame, denoted by dashed lines in Fig. 1.
Many mission architectures benefit from the inclusion of low-thrust electric propulsion. In contrast to traditional

chemical engines, electric propulsive engines are much more efficient, but deliver energy changes over longer time
intervals. Low-thrust engines using Solar Electric Propulsion (SEP) include ion thrusters that are powered through solar
panels on the spacecraft. Currently, ion thrusters are successfully employed, for example, on Deep Space 1 [17] and
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Dawn [18], as well as other missions. Building on this progress, upcoming low-thrust missions include Psyche [19] and
the Lunar Gateway [20]. This investigation assumes that 𝑃3 is a spacecraft with a Constant Specific Impulse (CSI)
low-thrust engine. The additional propulsion force augments the natural nondimensional CR3BP equations of motion
with low-thrust terms, 

¥𝑥 − 2 ¤𝑦−𝑥 = − (1 − 𝜇) (𝑥 + 𝜇)
𝑟313

− 𝜇(𝑥 − 1 + 𝜇)
𝑟323

+ 𝑎lt𝑢𝑥
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− 𝜇𝑦

𝑟323
+ 𝑎lt𝑢𝑦

¥𝑧 = − (1 − 𝜇)𝑧
𝑟313

− 𝜇𝑧

𝑟323
+ 𝑎lt𝑢𝑧

¤𝑚 = 0 + − 𝑓 𝑙∗

𝐼sp𝑔0𝑡∗

(1)

where the right column denotes the additional terms introduced by the low-thrust force, 𝑡∗ and 𝑙∗ are the system
characteristic time and length, respectively, and 𝑔0 = 9.80665 × 10−3 km/s. The distances between 𝑃3 and the first and
second primary body are defined as 𝑟13 =

√︁
(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2 and 𝑟23 =

√︁
(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2, respectively. Motion

in the CR3BP is nonlinear in a notably sensitive dynamical regime, thus, the proposed guidance strategy exploits the
impact of the low-thrust terms to achieve desired behavior. As detailed by Cox et al. [21], thrust direction is defined by
the low-thrust acceleration vector,

𝑎𝑎𝑎lt =
𝑓

𝑚
�̂� = (𝑎lt𝑢𝑥)𝑥 + (𝑎lt𝑢𝑦) �̂� + (𝑎lt𝑢𝑧)𝑧 (2)

where 𝑓 is the nondimensional thrust magnitude, 𝑚 = 𝑀3/𝑀3,0 is the nondimensional spacecraft mass, and 𝑀3
is the mass of the spacecraft at the beginning of the thrusting segment. The thrust direction is oriented by a unit
vector, �̂�, fixed in the rotating frame. Over any integration segment, thrust is assumed fixed in the CR3BP rotating
frame. While a continuously changing inertial thrust direction may not be practical, precession of the rotating
frame during thrusting time intervals may be addressed when transferring CR3BP solutions into a higher-fidelity
model. Furthermore, propulsive capability is inversely related to spacecraft mass and, hence, as propellant is
expended, the spacecraft gains more thrust. The nondimensional thrust magnitude is computed as, 𝑓 = 𝐹𝑡∗

𝑙∗𝑀3,0
,

�̂�

�̂�
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Fig. 1 Vector definitions in the CR3BP. The rotating
frame (�̂�, �̂�) is oriented with respect an inertial
reference frame (�̂�, �̂�) by an angle 𝝓.

where 𝐹 is thrust in kilonewtons and 𝑀3,0 is the initial mass
of the spacecraft in kilograms. Furthermore, the equivalent
Δ𝑉 of a low-thrust maneuver is derived from the ideal rocket
equation,

Δ𝑉equiv. = 𝐼sp𝑔0 log
(
𝑚0
𝑚 𝑓

)
(3)

and provides an intuitive measure of the change in velocity
for a CSI engine.
This investigation includes a sample spacecraft with

maximum propulsive capability of 𝑓max = 0.04. A
comparison between this sample spacecraft and other
previous and planned engine capabilities is summarized in
Table 1. The sample spacecraft possesses similar propulsive
capability to the planned Psyche spacecraft, which is greater
than Hayabusa 1, Hayabusa 2, Dawn, and Lunar IceCube,
but less than Deep Space 1. As a nondimensional quantity,
this thrust level represents any spacecraft with the same
thrust-to-mass ratio. For example, 𝑓max = 0.04 models
an 11.46 kg spacecraft with a BIT-3 CubeSat engine [22]
(planned for use on Lunar IceCube and LunaH-Map) as well
as an 850.2 kg spacecraft with an NSTAR engine [17] (used
on Deep Space 1 and Dawn).
Without a known analytical solution in the CR3BP, numerical integration methods are leveraged to produce a time

history stemming from an initial value problem. For implementation, it is useful to express the equations of motion, in
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Eq. (1), as seven coupled first-order equations that are then solved using numerical integration techniques. For this
investigation, a Runge-Kutta-Fehlberg 78 integration scheme is employed.

Table 1 Low-thrust capability of various spacecraft, nondimensionalized in the Earth-Moon system.

Abbrv. Spacecraft 𝑓max, nondim 𝑀3,0, kg 𝐹max, mN

H1 Hayabusa 1 [23] 1.640 · 10−2 510 22.8
H2 Hayabusa 2 [24] 1.628 · 10−2 608.6 27.0
LIC Lunar IceCube [22, 25] 3.276 · 10−2 14 1.25
Dawn Dawn [18] 2.741 · 10−2 1217.8 91.0
DS1 Deep Space 1 [17] 6.940 · 10−2 486.3 92.0
Psyche Psyche [19, 26] 4.158 · 10−2 2464 279.3
s/c Sample Spacecraft 4 · 10−2 n/a n/a

fmax, nondim

0
0.01 0.05 0.1

s/c DS1DawnH1

H2 LIC Psyche

B. Cislunar Orbits
Missions to cislunar space are becoming increasingly common. Many upcoming spacecraft plan to leverage periodic

orbits in the vicinity of the 𝐿1 and 𝐿2 Earth-Moon CR3BP Lagrange points as baseline trajectories. These missions
range from small cubesats, such as Lunar IceCube [25], to the flagship Artemis and Gateway programs [27]. In
general, cislunar orbits are computed in the CR3BP during preliminary investigations, and subsequently transferred
to a higher-fidelity ephermeris force model. To evaluate preliminary results, the CR3BP serves as the basis for this
investigation.
Orbits in the CR3BP are commonly characterized by stability properties. In particular, one commonly used metric

computes a linear estimate of stability based on eigenvalues of the monodromy matrix (the state transition matrix
propagated for one orbital period). This ‘stability index’ is evaluated as,

𝜈 =
1
2

(
|𝜆max | +

1
|𝜆max |

)
(4)

where 𝜆max represents the maximum eigenvalue of the monodromy matrix. Orbits with 𝜈 <= 1 are considered linearly
stable. Nearly-stable orbits, such as Near Rectilinear Halo Orbits (NRHOs), are of particular interest to upcoming
missions.
Three candidate destination orbits in the lunar vicinity are employed in this investigation to evaluate the proposed

stationkeeping framework. The three orbits, visualized in Fig. 2, are summarized as:
1) The 9:2 synodic resonant southern 𝐿2 NRHO (planned baseline for the Lunar Gateway [27]), plotted in red.
2) A distinctly unstable member of the 𝐿2 southern halo orbit family, plotted in blue.
3) An 𝐿2 southern butterfly orbit at nearly 2:1 resonance – similar to the higher-𝑟𝑝 butterfly in Davis et al. [28],
plotted in green.

Specific values relevant to each orbit are listed in Table 2. The stability properties for each orbit are particularly
important for stationkeeping applications. The stability index, defined in Eq. (4), across the 𝐿2 southern halo and
butterfly families are plotted in Figs. 3(a) and 3(b), respectively, where specific colors highlight the stability indices of
three sample destination orbits in their respective families.

C. Stationkeeping
Numerous strategies exist for stationkeeping leveraging dynamical structures in the vicinity of libration points.

In many cases, specific characteristics of the underlying periodic orbit are exploited to compute low-cost maneuvers,
limiting the applicability of any one strategy to a wide theater of operations. For example, Floquet mode control
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Table 2 Orbit characteristics

Period, days 𝐶, nondim Stability ix., 𝜈 Perilune radius, km
9:2 NRHO 6.56 3.046767 1.32 3,210
Halo Orbit 13.59 3.059435 71.02 36,000
Butterfly Orbit 13.64 3.080410 10.03 9,000

x̂, nondim
0.8 0.9 1.0 1.1 1.2

ŷ, nondim
-0.2

-0.1
0.0

0.1
0.2

ẑ,
no

nd
im

-0.2

-0.1

0.0

0.1

L1

L2

Moon

Fig. 2 Sample destination orbits employed in this investigation.
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Fig. 3 Stability indices along the Earth-Moon 𝑳2 southern orbit families employed in this investigation, plotted
on a logarithmic scale.
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exploits stability information for unstable orbits to compute corrective maneuvers that cancel unstable modes [29, 30].
While effective on distinctly unstable orbits, Floquet mode approaches assume accurate computation of the unstable
directions: a condition that is frequently unavailable in cislunar space. Numerous alternative strategies are demonstrated
for libration point orbits, including classical control theory, Hamiltonian structure preserving control, and continuation
strategies [5]. Summaries of previous contributions, available stationkeeping techniques, and mission applications in
multi-body regimes are compiled by Shirobokov et al. [31] and Muralidharan [32].

1. Axis Control
One particular stationkeeping approach, crossing control, has emerged as an especially powerful strategy for

maintaining symmetric orbits in multi-body regimes [5, 33], with particular recent interest in Earth-Moon NRHO
stationkeeping [34]. Many structures in the vicinity of the collinear libration points, including the 𝐿1, 𝐿2, and 𝐿3 halo
families, are symmetric across the rotating 𝑥𝑧-plane in the CR3BP. The 𝑥-axis control algorithm leverages this symmetry
by employing a differential corrections technique to target a spacecraft’s 𝑥-velocity at near-perpendicular crossings of
the plane of symmetry at locations downstream. This approach yields remarkably low-cost maneuvers, is effective in a
full-ephemeris force model, and is extendable to low-thrust propulsion options [35].
To evaluate the proposed reinforcement learning schemes, a simple 𝑥-axis control strategy is implemented. In a full

ephemeris-model, 𝑥-axis control is comprised of: 1) ‘long horizon maneuvers’ to compute a long-term virtual baseline
solution and 2) ‘short horizon maneuvers’ to target near-term crossing conditions along the virtual baseline trajectory
[5]. This research effort is a preliminary investigation into the proposed RL approaches and the numerical studies
are, therefore, limited to the CR3BP. In this context, the periodic orbit itself serves as a long-term baseline, and only
short-horizon maneuvers are necessary for the 𝑥-axis control algorithm to maintain the orbit. The algorithm itself is
detailed by Guzzetti et al. [5], and the resulting impulsive maneuvers are transformed into low-thrust arcs using the
ideal rocket equation, as suggested by Newman et al. [35].

2. Maneuver Placement Strategies
Maneuver locations and frequency depend on many factors including, but not limited to, operational constraints,

spacecraft hardware, science objectives, navigation and tracking constraints, dynamical sensitivity, impacts to attitude
control, and fuel availability [36]. Many applications rely on prior experience, heuristics, and trade studies to determine
maneuver placements. Stationkeeping is necessary to maintain periodic orbits about collinear libration points and,
therefore, past mission experience provides a useful background for determining maneuver schedules. In Sun-Earth
multi-body applications, the ACE mission places maneuvers at one 𝑧-axis extremum every 6 months, while WIND
and SOHO implement maneuvers at an approximate 90-day cadence [36]. The Genesis mission similarly distributed
maneuvers evenly in time, with 2–4 maneuvers implemented per orbital period [37]. In these missions, maximizing
the time between maneuvers is particularly important to avoid interruptions to science objectives. In the Earth-Moon
system, the ARTEMIS mission implemented maneuvers at 𝑥𝑧-plane crossings and 𝑦-max amplitudes [38].
In applications involving the upcoming Gateway and Artemis programs, maneuvers along NRHOs are planned

near apolune to avoid the dynamically sensitive region near the Moon [35]. For NRHOs, assuming one maneuver per
revolution, Δ𝑉 placement is determined via Monte Carlo simulations across a range of orbits and maneuver locations [5].
While an exhaustive search of all Δ𝑉 locations is effective in this simple case, this approaches relies on discretization
and expensive Monte Carlo simulations, becoming quickly intractable for complex mission scenarios and maneuver
patterns. Furthermore, the circumstances for different missions and spacecraft influence maneuver planning and, hence,
no one pattern of maneuvers is effective for all types of controllers.
An alternative newer methodology for maneuver placement, proposed by Muralidharan and Howell, is to determine

stationkeeping locations by observing the angle between maneuvers and downstream stretching directions, computed via
singular value decomposition of the state transition matrix [39]. This approach is demonstrated as effective for as many
as three maneuver locations per orbit in the 𝐿1 NRHO region, with potential applicability for additional maneuvers.
In reinforcement learning efforts, previous applications place stationkeeping maneuvers either at axis crossings [3],

or at regular intervals that are based on previous research efforts [2] or correspond to particular mission characteristics
such as the frequency of momentum unload cycles [1]. In other guidance applications, low-thrust spacecraft are assumed
to be constantly thrusting, with control parameters adjusted at regular intervals [11, 15]. Implementing maneuvers at a
fixed cadence is well-suited to reinforcement learning, but poses several challenges. First, this approach assumes the
maneuver frequency is known a-priori and, second, the resulting controller may be unable to accommodate shifts in the
schedule due to one of many operational constraints.
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III. Reinforcement Learning Formulation

A. Reinforcement Learning Overview
Reinforcement Learning (RL) is a branch of machine learning that encompasses a broad range of goal-oriented

algorithms that ‘learn’ to perform tasks by means of trial-and-error. Current state-of-the-art RL approaches employ
modern advancements in neural networks to aid in challenging tasks. Policy gradient methods are of particular
recent interest due to their demonstrated ability in continuous control tasks. One such algorithm, Twin-Delayed Deep
Deterministic Policy Gradient (TD3) [40], is employed in this investigation to train a neural network controller.

1. Neural Networks
A Neural Network (NN) is a class of nonlinear statistical models that are frequently employed in ML classification

and regression tasks [41]. The term neural network encompasses many different types of statistical models with
various levels of complexity. When applied correctly, NNs perform exceedingly well, and are a driving factor in ML
advancements over the past decade. While frequently used in supervised learning applications, NNs are also employed
extensively in modern RL algorithms due to their demonstrated ability in approximating nonlinear functions. Many
traditional tabular RL approaches, such as 𝑄-learning, rely on finely discretizing the state and action spaces, quickly
becoming impractical as the number of dimensions in the problem increases. Thus, leveraging NNs allows modern
algorithms to both access continuous state and action spaces and to easily incorporate additional dimensions.
Evaluating a feedforward neural network consists of straightforward linear algebra operations, with several nonlinear

element-wise activation functions. After the input layer, each node is computed as a linear combination of weighted
values and a bias, and is then processed through an activation function to incorporate nonlinearity into the model [41].
The weights signify the impact that particular nodes exert on each node in the next layer. The bias allows the activation
function to be shifted left or right for each node. Together, the weights and biases form the set of trainable parameters
for the model. In general, these parameters cannot be known a-priori, and so no suitable initial guess for their value is
possible. Hence, the weights in this investigation are randomly initialized according to a normal distribution of zero
mean and the biases are initialized to zero.
Without activation functions, the network is only able to model linear functions and, thus, the selection of the

activation function is an important component in neural network performance. Furthermore, bounded functions are
advantageous since they aid in normalizing the output of each neuron. To incorporate nonlinearity, this investigation
employs Rectified Linear Unit (ReLU) for all hidden layers, and hyperbolic tangent (tanh) to bound output for the
controller. Linear activation is also, at times, advantageous. Within RL, networks that produce a single scalar output
value frequently employ a linear activation in the output layer.

2. Onboard Considerations
Neural networks are potentially well-suited for use on a flight computer. While training is computationally complex,

the evaluation process is relatively simple; several matrix multiplications and additions, combined with element-wise
activation functions, encompass the entire process. Furthermore, flight software often requires algorithms to predictably
complete in a given number of CPU cycles. For example, Orion orbit guidance is required to complete in a fixed
number of steps, which poses significant difficulty in numerical integration and targeting processes [42]. If a function is
predictable, a certain amount of processing time is easily allocated. Complexity is introduced when procedures are
unpredictable, such as methodologies that require iteration. While computationally lightweight, neural networks are
also deterministic which, together with predictability, renders them well-suited to the flight environment.
Despite the relative simplicity in evaluation, implementing a NN on a flight computer presents additional challenges

due to “significant amounts of multiply and accumulate operations” and a “substantial amount of memory to store data”
[43]. However, the proposed neural network controller is relatively small, containing 128,205 trainable parameters
and a memory footprint of 513 KB (0.513 MB) assuming 32-bit floating point precision. Furthermore, specialized
“neuromorphic” flight processors are currently being developed to enable low-power NN evaluations in space applications
[43]. Adoption of neuromorphic hardware into flight systems will render machine learning approaches more accessible
and productive, and may enable efficient autonomous control, decision making, and onboard adaptive learning [44].
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3. Actor-Critic Reinforcement Learning
Reinforcement learning is a class of algorithms in which a goal-seeking agent seeks to complete a task by means of

interaction with an environment. An agent is a controller that maps observed variables to actions. The learning process
originates with the agent directly exploring an environment by means of trial-and-error. The environment communicates
relevant information about its dynamics to the agent by means of a state signal, which the agent then employs to perform
some action. The environment updates its current state based on the action and computes a numerical reward that
communicates the immediate benefit of the given action. This process repeats iteratively such that, over time, the agent
improves its policy (the means by which decisions are accomplished) by seeking to maximize the reward signal. In
many cases, terminal conditions exist that cease the learning process. In these cases, the environment typically resets
to an initial configuration, and the process begins anew. These are identified as episodic tasks, where each episode
signifies an attempt by the agent to solve a problem. A schematic for the high-level process of an RL agent is depicted in
Fig. 4. This diagram highlights the three signals that enable communication between the agent and environment at time
steps 𝑡 and 𝑡 + 1: state, action, and reward. While the RL literature prefers the terms agent, environment, and action,
these expressions are analogous to the more common engineering terms controller, controlled system (or plant), and
control signal [45].
Without external supervision, the agent uncovers complex dynamical structures that inform decision-making. This

procedure is characterized as a Markov Decision Process (MDP), which involves both feedback and associative actions,
and are a classical formalization of sequential decision-making problems [45]. The MDP is the idealized mathematical
form of the problem, and allows for theoretical analysis of the RL process. In the infinite-horizon discounted case,
the MDP is formulated by a tuple < S,A, 𝑝, 𝑟, 𝑝0 >, where S and A are the sets of all possible states and actions,
respectively, 𝑝(𝑠𝑡+1𝑠𝑡+1𝑠𝑡+1 |𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ) : S ×A × S → [0, 1] is the state-transition probability distribution, 𝑟 (𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ) : S ×A → R is
the reward function, and 𝑝0 (𝑠0𝑠0𝑠0) is the density of the initial state distribution.
For a problem to be accurately cast as an MDP, each state must satisfy the Markov property, which requires

that future states depend only upon the current state, and not on the series of events that preceded it [45], i.e.,
𝑝(𝑠𝑡+1𝑠𝑡+1𝑠𝑡+1 |𝑠0𝑠0𝑠0, 𝑎0𝑎0𝑎0, . . . , 𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ) = 𝑝(𝑠𝑡+1𝑠𝑡+1𝑠𝑡+1 |𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ). In many practical applications, only partial information is available, and the
agent receives a subset of all environmental data. This signal is denoted the “observation” and serves as an analog to
the state signal; such ‘reduced’ information procedures are labelled Partially Observable Markov Design Processes
(POMDPs). The delineation between state and observation is important in POMDPs because it reinforces the notion
that the agent is acting on incomplete information. However, this investigation assumes a fully observable MDP and,
thus, for simplification, the observation 𝑜𝑡𝑜𝑡𝑜𝑡 is represented as the state 𝑠𝑡𝑠𝑡𝑠𝑡 , and no such distinction is necessary.
An agent seeks to develop a policy 𝜋 : S → 𝑝(A) that is the probability distribution over the action space that

maximizes future returns. The expected return is a balance between immediate and future rewards, formalized as,

𝑅𝑡 =

𝑇∑︁
𝑖=𝑡

𝛾 (𝑖−𝑡)𝑟 (𝑠𝑖𝑠𝑖𝑠𝑖 , 𝑎𝑖𝑎𝑖𝑎𝑖) (5)

where 𝛾 ∈ [0, 1] is the discount factor that determines the extent to which the agent prioritizes immediate versus future
rewards (typically near 1). Reinforcement learning aims to construct a policy 𝜋 to maximize the expected return of a
task originating from the initial state distribution 𝑝0 (𝑠0𝑠0𝑠0), thus, maximizing the objective function 𝐽 = E𝑠𝑖𝑠𝑖𝑠𝑖∼𝑝𝜋 ,𝑎𝑖𝑎𝑖𝑎𝑖∼𝜋 [𝑅0]
where 𝑝𝜋 is the discounted state visitation distribution following policy 𝜋.
The definition of expected return leads to the formalization of the action-value function. Value functions are

estimated in nearly all RL algorithms and inform the agent of the quality of a particular state. For an MDP, the

Agent

Environment

Action
atatat

rt+1

st+1st+1st+1

Reward
rt

State
ststst

Fig. 4 The agent-environment process in a Markov decision process (reproduced from Sutton and Barto, Ref
[45], p.48. Figure 3.1).
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action-value function, 𝑄 𝜋 (𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ), is defined as the expected return of taking action 𝑎𝑡𝑎𝑡𝑎𝑡 at 𝑠𝑡𝑠𝑡𝑠𝑡 , and subsequently following
the policy 𝜋:

𝑄 𝜋 (𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ) = E𝑠𝑖𝑠𝑖𝑠𝑖∼𝑝𝜋 ,𝑎𝑖𝑎𝑖𝑎𝑖∼𝜋 [𝑅𝑡 |𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ] = E𝑠𝑖𝑠𝑖𝑠𝑖∼𝑝𝜋 ,𝑎𝑖𝑎𝑖𝑎𝑖∼𝜋

[
𝑇∑︁
𝑖=𝑡

𝛾 (𝑖−𝑡)𝑟 (𝑠𝑖𝑠𝑖𝑠𝑖 , 𝑎𝑖𝑎𝑖𝑎𝑖)
]

(6)

In practice, many modern algorithms estimate 𝑄 𝜋 (𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ) using a ‘critic’ neural network.
Policy optimization methods seek to directly ‘learn’ a parameterized policy, 𝜋𝜃𝜃𝜃 (𝑎𝑎𝑎 |𝑠𝑠𝑠), where 𝜃𝜃𝜃 represent a policy

parameter vector. In contrast to some value optimization methods, such as the classical 𝑄-Learning approach, policy
optimization methods are well suited to problems with a continuous action space. The ability to incorporate continuous
state and action spaces offers significant advantage in complex control tasks that suffer from discretization and are more
extendable to higher-dimensional dynamical models. A particularly fruitful branch of RL research emerges from a
class of hybrid algorithms, identified as actor-critic methods. These approaches seek both the policy (i.e., actor) and
the value (i.e., critic) functions, where both actor and critic are typically represented as neural networks. Common
actor-critic schemes include Advantage Actor Critic (A2C) [46], Deep Deterministic Policy Gradient (DDPG) [47],
Twin Delayed DDPG (TD3) [40], Soft Actor Critic (SAC) [48], Trust Region Policy Optimization (TRPO) [49], and
Proximal Policy Optimization (PPO) [50].
A key delineation between modern actor-critic methods surrounds an assumption concerning the policy distribution

from which the actions are sampled. In “on-policy” algorithms, such as TRPO and PPO, update equations assume all
actions are sampled from the most recent version of the parameterized policy, 𝜋𝜃𝜃𝜃 , causing the current data batch to be
discarded following each optimization process. In contrast, ‘off-policy” approaches such as TD3 and SAC, actions
may be sampled from any distribution, allowing for improved learning efficiency. While the state-of-the-art landscape
is constantly evolving in reinforcement learning, both on-policy (PPO) and off-policy (TD3 and SAC) schemes are
demonstrated as effective in continuous control tasks, and this investigation employs TD3 due to favorable data efficiency
properties.

4. Twin Delayed Deep Deterministic Policy Gradient (TD3)
Various RL approaches use the state-action value function 𝑄(𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ), updated by iterating on the Bellman equation,

to formulate an effective policy for off-policy control. An early breakthrough for problems with discrete state and action
spaces occurred in 1989 with 𝑄-Learning: a temporal difference learning algorithm that allows powerful agents to be
trained in an off-policy manor [51]. The core motivation for the 𝑄-Learning approach is simple: if the 𝑄 𝜋 (𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 )
function is known, that is, the value of all state action pairs is accurately represented, then an optimal policy is available
by simply selecting the available action that possesses the largest 𝑄 𝜋 (𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ) value. While 𝑄-Learning is very effective,
it was limited, along with other RL algorithms at the time, by the assumption of discrete spaces due to the lack of
effective nonlinear function approximators.
A major breakthrough in RL came in 2015 when the 𝑄-Learning algorithm was extended to continuous state

space problems with the Deep 𝑄-Network (DQN) algorithm [52]. The DQN approach involves the same update rule
as 𝑄-Learning, but rather than direct computation, the 𝑄-function is effectively estimated using a neural network:
alleviating the need for tabulated results. However, similar to 𝑄-Learning, DQN still suffered from the discrete action
space assumption. While acceptable for tasks with a small, finite number of controls (such as Atari games), the curse of
dimensionality in the action space limits applicability for continuous control tasks, such as robotics.
To address the action-space dimensionality limitation with DQN, Lillicrap et al. introduce Deep Deterministic

Policy Gradient (DDPG) [47]: an extension of DQN and Deterministic Policy Gradient (DPG) [53], that uses a second
“actor” neural network to construct a parameterized action function, and perform the 𝑄(𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ) update with the new actor
network. A key portion of DDPG is the inclusion of “target” networks for both the actor and value (i.e., critic) networks
(a similar target approach is also seen in the double-DQN extension of the DQN approach [54]). By including duplicate
networks, the second “target” network may be held constant while the actual network is updated. A more stable process
results because it doesn’t involve continuously updating estimates to be used in the minibatch updates. While powerful,
however, DDPG contains several notable limitations. In particular, the value function is often over-estimated, which
leads to a significant bias in learning.
Twin Delayed Deep Deterministic Policy Gradient (equivalently, Twin Delayed DDPG, or TD3) [40] is a

state-of-the-art off-policy actor-critic algorithm that concurrently learns a parameterized policy 𝜋𝜃𝜃𝜃 and action-value
function 𝑄 𝜋 (𝑠𝑡𝑠𝑡𝑠𝑡 , 𝑎𝑡𝑎𝑡𝑎𝑡 ) [40]. Twin Delayed DDPG addresses the instability of DDPG in several ways. First, two separate
value networks are included. Incorporating the minimum value estimate of the two networks mitigates the effect
of the value function over-estimation bias present in DDPG (along with other actor-critic schemes). Next, DDPG

9



involves bootstrapping, i.e., implementing updates based on estimates rather than true values. Noisy estimates cause
noisy gradients that pose significant difficulty in network optimization. The TD3 approach seeks to mitigate this error
by delaying updates to the actor network in hopes that additional updates to the critic network will provide more
accurate estimates for the actor updates. Finally, to avoid peak overfitting in the policy network, policy smoothing is
included, which introduces a small amount of clipped random noise to the output of the target policy. Together, these
improvements form the TD3 variant of DDPG. While the inclusion of function approximations demands increased
complexity, TD3 shares the same core motivation of 𝑄-Learning: optimize a policy network to compute actions that
maximize the 𝑄-function. This investigation bases its implementation of TD3 on the open-source “Spinning Up”
Tensorflow implementation provided by OpenAI [55], and network architectures are listed in Appendix A, Table 5.

IV. Learning Environment Configurations
Properly formulating a reinforcement learning environment is critical to algorithmic performance. Researchers

develop RL algorithms to be applicable to many types of problems, however, each environment must be specifically
tailored to a particular application. In general, when constructing RL environments, a balance must be achieved between
accurately quantifying the given task, and not including excessive domain-specific knowledge that might render an
approach overly application-specific. Furthermore, it is critically important to design an environment such that the
underlying assumptions are not violated in the RL process. In particular, the environment quantifies the problem of
interest, the system dynamics, episode details, and the process to pass information back-and-forth between the agent and
environment. In particular, as depicted in Fig. 4, the state, action, and reward signals quantify the communications
process. Implementing an effective environment involves properly defining each signal. The environment must define
the initialization and termination of episodes and must ensure that its computational footprint does not inhibit learning
performance.
While both the selection and implementation of an appropriate RL algorithm is critical to the learning performance,

so too is proper design of the RL environment. The environment represents the formulations for the state, action, and
reward signals. The state vector, 𝑠𝑡𝑠𝑡𝑠𝑡 , communicates relevant information to the agent about the environment at a particular
point in time. Hence, the state must be designed to accurately communicate information about the environment dynamics
and subsequent flow. The action, 𝑎𝑡𝑎𝑡𝑎𝑡 , defines an agent’s ability to alter that environment and must offer the agent sufficient
control authority to ‘learn’ an effective policy. Lastly, the reward signal, 𝑟 , is a scalar value that denotes the immediate
positive or negative impact of a particular action. The selection of a reward function is arguably both the most difficult
and most important function for design and is, thus, a critical element for this learning framework. Proper signal design
is vital because even the most robust learning algorithm consistently falls short in an ill-designed environment. Hence,
a proper quantification of positive and negative behavior, given the goals of the guidance framework, is crucial in
achieving desirable outcomes.
This investigation involves two distinct learning processes: the ‘control’ and ‘timing’ tasks. In the first, given any

location along the orbit and various levels of error, the agent is trained to estimate control states that maintain the
periodic motion. Next, given a controller (RL-trained or otherwise), the timing environment seeks to train an agent
to estimate an effective maneuver placement strategy. While there is some overlap in the characterization of system
dynamics across the two environments, each problem supports a different subtask in the stationkeeping problem and,
therefore, differs in several important ways, including the transition dynamics and the action definitions.

A. Dynamical Model Characterization
The control and timing tasks are both formulated around stationkeeping and, therefore, share some similarities in

this formulation. In particular, both problems necessarily involve identifying a location along a periodic orbit using
coordinates that are more easily applied to neural networks. Along with this representation, both control and timing
training algorithms share a state signal, quantification of deviation criteria, and an error model.

1. Periodic Orbit Encoding for Neural Networks
Applications in celestial mechanics frequently involve periodic orbits, which presents a specific challenge for neural

networks. For two-body Keplerian applications, locations along an orbit are most frequently represented by an angle,
e.g., true anomaly, eccentric anomaly, or mean anomaly. In multi-body dynamical regimes, angles are occasionally
leveraged in specific applications, but the wide variety in periodic orbit geometry offers challenges in any general
angle definition. Instead, elapsed time since a specified initial condition is most frequently employed to represent
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location along an orbit. Regardless of coordinate choice, directly including cyclic values, such as angle or time along a
periodic orbit, in a neural network architecture is ineffective due to the discontinuity at beginning and end conditions.
This challenge is further exacerbated by cyclic value extrema typically occurring at apse conditions, that often arise as
critically important locations along an orbit. Instead, this investigation leverages a trigonometric (‘trig’) encoding and
decoding [56] process to represent locations along a periodic orbit.
To apply the trig encoding to periodic orbits in the CR3BP, time since a fixed state, 𝑡po ∈ [0, P] represents an orbit

location, where P is the period of the underlying structure. The selected fixed initial state may occur anywhere along the
orbit. As a cyclic value, 𝑡po is conveniently represented as a fraction of the orbit period. The ‘encoding’ process may
be interpreted as projecting 𝑡po onto a unit circle, and applying the sine and cosine functions on the resulting angle.
‘Decoding’ is accomplished via the two-argument arctangent function atan2, i.e.,

Encoding : 𝑡po → [sin 𝜉, cos 𝜉], where 𝜉 =
𝑡po · 2𝜋
P

Decoding : [sin 𝜉, cos 𝜉] → 𝑡po, where 𝑡po =
atan2 (sin 𝜉, cos 𝜉) · P

2𝜋

(7)

The angle 𝜉 has no general physical significance. Several previous applications involving Near Rectilinear Halo Orbits
(NRHOs) label 𝜉, measured from perilune, as ‘Mean Anomaly’ [39, 57]. This interpretation provides physical insight
for orbits with elliptic shapes in the rotating reference frame, but breaks down for more complex geometries that involve
multiple periapses in a single period.
The evolution of 𝜉 along each of the sample destination orbits, plotted in Fig. 2, is depicted in Fig. 5. In each

case, apolune is arbitrarily selected for 𝜉 = 0 and, therefore, 𝜉 = 𝜋 occurs at the half-period of the orbit. Then, 𝜉 = 𝜋

coincides with perilune for the NRHO and halo orbit examples, and with the second apolune for the butterfly orbit.
The different evolution of 𝜉 across orbits from different families reinforces 𝜉’s lack of general physical significance in
configuration space.

2. State Signal
Under a Markov Decision Process (MDP), the environmental state at time 𝑡, 𝑠𝑡𝑠𝑡𝑠𝑡 , must include all necessary past

environmental information that impacts the future [45]. For the CR3BP, position, velocity, and spacecraft mass are
together sufficient, since future states are predicted by numerically integrating the equations of motion specified in
Eq. (1). Hence, at every time step 𝑡, the dynamical state 𝑞𝑡𝑞𝑡𝑞𝑡 ∈ R7 is defined as,

𝑞𝑡𝑞𝑡𝑞𝑡 =

[
𝜌𝜌𝜌s/c 𝑚

]
=

[
𝑥 𝑦 𝑧 ¤𝑥 ¤𝑦 ¤𝑧 𝑚

]
(8)

While 𝑞𝑡𝑞𝑡𝑞𝑡 alone is sufficient to satisfy the Markov property, the agent performance is greatly enhanced by augmenting
the dynamical state, 𝑞𝑡𝑞𝑡𝑞𝑡 , with additional variables to form the state signal, 𝑠𝑡𝑠𝑡𝑠𝑡 . In actor-critic RL formulations, both actor
and critic networks receive the complete state signal as inputs, as depicted in Fig. 6. Hence, both the policy and value
functions are dependent on the selection of additional variables. Since this problem involves an agent learning to track
a reference solution, relative position and velocity represent valuable data to the agent’s performance. The relative
information is computed simply as,

𝛿𝜌𝛿𝜌𝛿𝜌 = 𝜌𝜌𝜌s/c − 𝜌𝜌𝜌po =
[
𝛿𝑟𝛿𝑟𝛿𝑟 𝛿𝑣𝛿𝑣𝛿𝑣

]
=

[
𝛿𝑥 𝛿𝑦 𝛿𝑧 𝛿 ¤𝑥 𝛿 ¤𝑦 𝛿 ¤𝑧

]
(9)

where 𝜌𝜌𝜌s/c is the position and velocity of the agent at some time step, and 𝜌𝜌𝜌po = 𝜌𝜌𝜌(𝑡po) is the position and velocity of the
nearest neighbor along the given reference path, located at time 𝑡po since the specified initial condition. Here, “nearest”
is defined as the state along the reference with the lowest L2 norm for the relative position and velocity. Note that this
definition of “nearest” does not include time and, hence, is a normal rather than an isochronous correspondence. If the
reference orbit includes a set of 𝑛 discrete points, Rref, then the nearest state 𝜌𝜌𝜌po is defined as,

𝜌𝜌𝜌po ∈ Rref s.t. 𝑘 = | |𝛿𝜌𝛿𝜌𝛿𝜌 | | =
√︁
𝛿𝜌𝛿𝜌𝛿𝜌 · 𝛿𝜌𝛿𝜌𝛿𝜌 is minimal (10)

The scalar value 𝑘 is a function of both the position and velocity deviation. This relative state information vector 𝛿𝜌𝛿𝜌𝛿𝜌,
along with the dynamical state 𝑞𝑡𝑞𝑡𝑞𝑡 and other optional additional observations, form the complete state signal,

𝑠𝑡𝑠𝑡𝑠𝑡 =

[
𝑞𝑡𝑞𝑡𝑞𝑡 𝛿𝜌𝛿𝜌𝛿𝜌 additional observations

]
∈ R13+ 𝑗 (11)
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Fig. 5 Locations along each sample orbit encoded by the angle 𝝃. The visualization of the NRHO (a) and halo
orbit (b) are projections onto the rotating 𝒚𝒛-plane.

where 𝑗 is the number of optional additional observations that are incorporated. Recall that, for a fully observable
MDP, the state 𝑠𝑡𝑠𝑡𝑠𝑡 and observation 𝑜𝑡𝑜𝑡𝑜𝑡 are interchangeable. The elements of the state signal must communicate sufficient
information about the environment to enable the actor and critic networks to accurately characterize the system dynamics.
The additional observations are problem-dependent and are, thus, included here as optional parameters. Since

this investigation involves periodic reference motion, the location of 𝜌𝜌𝜌po along the underlying periodic orbit is also
incorporated into the state signal, located by the angle coordinate 𝜉 as defined in Eq. (7). Leveraging the trig encoding
for 𝜉, the complete state vector becomes,

𝑠𝑡𝑠𝑡𝑠𝑡 =

[
𝑞𝑡𝑞𝑡𝑞𝑡 𝛿𝜌𝛿𝜌𝛿𝜌 sin(𝜉) cos(𝜉)

]
∈ R15 (12)

Equation (12) forms the state signal for both the control and timing tasks. Depending on the problem, potential additional
observations that may improve the learning performance include energy information (quantified by the Jacobi constant)
and distance to Moon, 𝑟23, however, these possibilities are not investigated here.

3. Deviation Criteria
In formulating both the control and timing training schemes, a measure of deviation is necessary to determine when

a spacecraft may be considered “departed” from the underlying periodic orbit. Several factors motivate selecting a
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Fig. 6 Actor networks for the (a) control and (b) timing tasks.

criteria. First, training occurs over more than 100,000 episodes, involving as many as 1.5 million interactions with the
dynamical environment. Therefore, the deviation flag must be computationally efficient to avoid increasing the already
cumbersome computation time. Several implementations are evaluated in this investigation process, including variations
of the momentum integral introduced by Guzzetti et al. [5]. While the current results do not yet indicate a benefit to this
type of sophisticated early escape detection method, future work may benefit from earlier escape warnings. Instead,
this investigation simply computes the absolute deviation in position and velocity from the reference orbit, |𝛿𝑟𝛿𝑟𝛿𝑟 | and
|𝛿𝑣𝛿𝑣𝛿𝑣 |, respectively, and flags deviations when a user-supplied limit is reached, or the spacecraft impacts a primary body.
Deviation is computed from the nearest state along the reference orbit, measured in both position and velocity as a
normal, rather than isochronous, correspondence. A K-dimensional tree (KD-Tree) structure is leveraged to efficiently
conduct the nearest neighbor search, as suggested by LaFarge et al. [11]. Recall that, in reinforcement learning, the
cost function is formulated as the sum of future discounted reward and, therefore, deviation at any point in the future
influences prior decisions. Hence, large tolerances are employed, and the algorithm is not sensitive to their precise
values. In all applications included in this investigation, the selected tolerances,

|𝛿𝑟𝛿𝑟𝛿𝑟 | < 10,000 km |𝛿𝑣𝛿𝑣𝛿𝑣 | < 250 m/s (13)

bound the maximum allowable values for |𝛿𝑟𝛿𝑟𝛿𝑟 | and |𝛿𝑣𝛿𝑣𝛿𝑣 |, respectively.

4. Error Models
For preliminary analysis, two sources of error are included in this investigation: orbit insertion and orbit determination.

For both the control and timing tasks, episodes begin with a spacecraft inserting into a periodic orbit with some degree
of uncertainty. This uncertainty is modeled by constructing 𝛿𝜌𝛿𝜌𝛿𝜌 measure values from zero-mean normal distributions,
where 3𝜎 error bounds are defined as 10 km and 10 cm/s for position and velocity values, respectively. Following
insertion, 3𝜎 orbit determination errors of 1 km and 10 cm/s are implemented each time the agent interacts with the
environment. While maneuver execution errors are not explicitly implemented during training of the control agent,
training actions are computed stochastically and, therefore, resilience to maneuver execution errors occurs naturally via
the RL training process.

B. Control Environment
The control environment seeks to train an agent capable of producing stationkeeping maneuvers from anywhere

along an orbit in the presence of uncertainty. This process is formalized through three signals that facilitate the
agent-environment communications process (state, action, and reward), and the transition dynamics that defines the
process by which the environment steps from one state to the next.

• State The state signal is summarized in Eq. (12).

13



• Action The action quantifies the three components of a low-thrust maneuver: magnitude 𝑓 , the vector components
representing thrust direction, (�̃�𝑥 , �̃�𝑦 , �̃�𝑧), and thrust time, 𝜏, as depicted in the output layer of the actor network in
Fig. 6(a). During the training phase, the network outputs the mean value of each action parameter and uses these in
conjunction with a derived variance to create a normal distribution for each value. The mean is essentially the agent’s
best guess for the control choice given a particular observation, and the variance is included to encourage exploration.
As in all policy optimization RL methods, over the course of training, the output of the network approaches an
optimal policy. Once fully trained, exploration is no longer necessary, so the mean values are used directly to form a
deterministic controller.
For a neural network controller, the bounds of the resulting action is governed by the selected activation function

in the output layer of the network. The activation function employed in this investigation is tanh and, therefore, the
action values are bounded by [−1, 1] and are scaled to reflect actual low-thrust values. Let ‘tilde’ denote raw, bounded,
outputs by the network. As suggested by LaFarge et al. [11], the thrust magnitude is re-scaled by the maximum total
allowable nondimensional thrust, and the thrust directions are combined and normalized to form a unit vector,

𝑓 =
𝑓 + 1
2

𝑓max ∈ [0, 𝑓max] �̂� = [𝑢𝑥 𝑢𝑦 𝑢𝑧] =
[�̃�𝑥 �̃�𝑦 �̃�𝑧]√︃
�̃�2𝑥 + �̃�2𝑦 + �̃�2𝑧

(14)

While zero provides an intuitive lower-bound for thrust time 𝜏 ∈ [0, 𝜏max], the selection of an appropriate upper
bound is challenging. If the selected value of 𝜏max is too small, the spacecraft may not possess sufficient control
authority to maintain the orbit. If the value is too large, small errors in control estimation become exacerbated,
and the agent is more likely to converge on a propellant-inefficient policy. A similar challenge arises in computing
impulsive maneuvers with bounding the maximum allowable maneuver size. This investigation bases the selection of
𝜏max on experiments and the expected stationkeeping maneuver sizes from the literature. Together, the complete
action 𝑎𝑡𝑎𝑡𝑎𝑡 ∈ R5 is delivered as,

𝑎𝑡𝑎𝑡𝑎𝑡 =

[
𝑓 𝑢𝑥 𝑢𝑦 𝑢𝑧 𝜏

]
∈ R5 where 𝜏 =

𝜏 + 1
2

𝜏max ∈ [0, 𝜏max] (15)

An interesting alternative formulation for a planar low-thrust control direction, detailed by Federici et al. [15],
leverages a trig encoding similar to Eq. (7), where duplication in the control space is removed by replacing the cosine
estimation with a simple sign function, and may be extrapolated to the spatial case by including two additional
parameters to model out-of-plane direction. Eliminating duplicate values from the action space may improve learning
performance, however this possibility is not investigated.

• Reward The reward function forms the feedback signal to communicate the effectiveness of a particular control
choice to the agent. Prior investigations involving reference trajectories typically include some form of relative state
minimization in the control reward function [1, 2, 5, 11]. While this reward choice encourages the agent to maintain a
very close proximity to the reference, such strict adherence to reference motion is often unnecessary in practical
applications, and may cause unnecessary propellant spent in correcting permissible levels of error [4]. Instead of
minimizing the distance to the underlying orbit, this investigation formulates success as simply “not deviating“ from
the reference, with a small additional penalty added to encourage propellant-efficient maneuvers (the formalization of
‘deviation’ is specified in Eq. (13)). Since the expected return is formulated as the sum of future discounted reward,
Eq. (5), a deviation penalty, applied at any point, impacts the entire trajectory of preceding actions. This formulation
encourages actions that avoid future deviation, thus, encouraging stationkeeping without minimizing state error. The
reward is computed as,

𝑟 =

{
𝑐 − 𝛼Δ𝑉equiv. Not deviated from reference
𝑝 Otherwise

(16)

where 𝑐 ∈ R≥0 is a constant reward for not deviating at each state, 𝛼 ∈ R≥0 is a scaling factor to determine the extent
to which propellant use is penalized, and Δ𝑉equiv. is the equivalent Δ𝑉 for a low-thrust maneuver, defined in (3).
Finally, 𝑝 ∈ R≤0 is the penalty applied each time the deviation criteria is met. Suggested values are listed in Table 4.

• Episode process The agent is trained over either 110,000 episodes or 1.5 million interactions with the environment,
whichever occurs first. Each episodes proceeds as follows:
1) Initial location along the orbit is selected from a uniform distribution where 𝑡po ∼ U(0, P), with an additional
perturbation introduced to model an insertion error.
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2) A stochastic control action, defined in Eq. (15), is computed by the agent, and simulated in the environment.
3) A ballistic coasting arc is introduced, where propagation time is selected from a uniform distribution where

Δ𝑡 ∼ U(Δ𝑡min,Δ𝑡max). Varying propagation time exposes the agent to many location along the orbit, and
discourages policies that rely on one particular maneuver frequency. After propagation is complete, an orbit
determination error is added to the final state.

4) Steps 2 and 3 alternate until either a the agent reaches a pre-determined maximum number of steps, or the
deviation criteria is reached.

Once training is complete, the actor neural network is saved, and may then be leveraged as a deterministic controller.
Due to the stochasticity in neural network initialization, it may be necessary that the training process is run several times
before a suitable agent is produced.

C. Timing Environment
Given any stationkeeping control strategy, the timing environment trains an agent to estimate the next maneuver

location along the reference orbit. The given controller may be an RL-trained neural network or a traditional control
strategy. Sample mission applications in this investigation demonstrate timing networks for both RL and 𝑥-axis control
approaches. The timing agent is rewarded for maximizing the time between maneuvers without escaping from the
vicinity of the orbit. The state, action, and reward signals again formulate the learning process:

• State The state signal is identical to the control environment, detailed in Eq. (12).
• Action The timing agent estimates the location of the next maneuver by leveraging the trig decoding process defined
in Eq. (7). Rather than estimating location directly, the neural network is tasked with separately estimating the sine
and cosine of the angle 𝜉+, which are then decoded to compute the time of the next maneuver, 𝑡+po, measured from a
fixed initial state along the periodic orbit, such that

𝑎𝑡𝑎𝑡𝑎𝑡 =

[
sin(𝜉+) cos(𝜉+)

]
∈ R2 → 𝑡+po =

P

2𝜋
atan2(sin(𝜉+), cos(𝜉+))] (17)

The time between successive maneuvers, Δ𝑡, is a derived quantity, and is measured as the time between the current (𝑡po)
and next (𝑡+po) maneuver locations, where Δ𝑡min serves as a minimum allowable time between thrust segments. If the
timing controller suggests a maneuver location such that Δ𝑡 < Δ𝑡min, then one period of the orbit is added to the coast
arc, Δ𝑡 = Δ𝑡 + P. The selection of Δ𝑡min is application-dependent, and this investigation employs Δ𝑡min = 24 hours as
the minimum time between maneuvers.

• Reward The reward signal for the timing environment is similar to the reward in the control environment, defined in
Eq. (16). As modeled previously, a penalty 𝑝 is imposed for violating the deviation threshold specified in Eq. (13) and
a small penalty on propellant expenditure, 𝛼Δ𝑉equiv., is included to encourage locations that yield low-cost maneuvers.
Finally, an additional term 𝛽Δ𝑡 is added to encourage policies that maximize the time between maneuvers, Δ𝑡. The
reward is computed as,

𝑟 =

{
𝑐 − 𝛼Δ𝑉equiv. + 𝛽Δ𝑡 Not deviated from reference
𝑝 Otherwise

(18)

where 𝛽 ∈ R≥0 is a scaling factor that controls the magnitude of the added coasting time bonus. As with the control
environment, this formulation of the reward does not explicitly encourage relative state minimization, and instead
relies on future deviation penalties to characterize the stationkeeping problem. Suggested values are listed in Table 4.

• Episode process The agent is again trained over either 110,000 episodes or 1.5 million interactions with the
environment, whichever occurs first. Each episodes proceeds as follows:
1) Initial location along the orbit is selected from a uniform distribution where 𝑡po ∼ U(0, P), with an additional
perturbation introduced to model an insertion error.

2) The specified controller computes control states given the current navigation state.
3) The timing agent selects the next maneuver location.
4) The time between maneuvers is calculated, such that Δ𝑡 ∈ [Δ𝑡min,Δ𝑡min + P].
5) Propagate Δ𝑡 and check deviation criteria. If the spacecraft is not deviated, and the agent has not yet reached the
pre-determined maximum number of steps, orbit determination errors are added, and steps 2–5 are repeated.

15



Upon training completion, the actor neural network is saved, and may then be directly leveraged as a deterministic
function to compute maneuver locations. Alternatively, experiments demonstrate that agents tend to converge on
repeating location sequences that may be represented as simple patterns. These patterns are identified from network
simulation, and may be directly employed to avoid neural network evaluation altogether. As with the control environment,
stochasticity in neural network initialization often leads to sub-optimal convergence and, hence, the algorithm may need
several simulations before a suitable policy is uncovered.

V. Experiments: Cislunar Orbits
The proposed training processes for control and timing tasks are evaluated along the three candidate cislunar

destination orbits plotted in Fig. 2. These orbits include the 9:2 synodic resonant 𝐿2 southern NRHO (the planned
baseline orbit for the upcoming Lunar Gateway), a more unstable member of the 𝐿2 southern halo family, and an 𝐿2
southern butterfly orbit at nearly 2:1 resonance. Characteristics of each orbit are listed in Table 2, where the stability
index is defined in Eq. (4) and visualized in Fig. 3. The variation in orbital period, energy, stability, and geometry
between these three orbits provides a useful basis for evaluating the proposed RL approaches.

A. Controller Training
Neural network controllers are trained using TD3 along each of the sample destination orbits. In each case, to

overcome the stochasticity in the neural network initialization, and to explore different reward coefficients, many agents
are trained in parallel. Once training is complete, a specific controller is selected based on simulation results and
desired behavior. Recall that, during training, the next maneuver location is selected from a uniform random distribution
between user-specified lower and upper bounds. During training, actions are stochastic, with small perturbations
introduced to better explore the action space. After training is complete, performance statistics are gathered on the
resulting deterministic controllers. In particular, deviation frequency and propellant consumption are key selection
metrics. Then, rather than computing locations randomly, the resulting controller is employed in the timing training
process to determine an effective maneuver pattern strategy for the particular controller. For this analysis, a single
controller is selected for each mission scenario, with Monte Carlo results listed in Table 3 under the “Training” pattern
for each RL controller. The results are summarized as follows,

• 9:2 NRHO: An inconsistent controller is intentionally selected to evaluate the training process for the timing
network. This controller produces relatively propellant-efficient maneuvers, but struggles to maintain the NRHO
when maneuvers are located near the Moon. This behavior is consistent with previous research efforts that
demonstrate maneuvers near perilune to be ineffective for NRHO stationkeeping [5, 34]. With 1–3 randomly
placed maneuvers per revolution, this controller maintains the vicinity of the 9:2 NRHO for 25 revolutions in
79.5% of scenarios.

• Halo orbit: A controller is selected that consistently maintains the given halo orbit. In the Monte Carlo simulation
with 5–15 randomly-placed maneuvers per revolution, this agent successfully avoids escaping from the reference
for 25 revolutions in 100% of trials.

• Butterfly orbit: The selected agent consistently maintains the given butterfly orbit, although 1.5% of Monte
Carlo trials did escape when maneuvers were randomly placed. This controller produced lower-cost maneuvers
than most other trained agents, and is selected for its balance between successfully maintaining the orbit and
lower annual stationkeeping cost.

While propellant-efficiency is an important metric in the control task, it is important to note that RL is not an optimal
control method and propellant minimization is not expected in the resulting agents. While neural networks are extremely
effective at function approximation, the control function is uncovered without any a-priori knowledge of desired
behavior, and the estimation is never perfectly accurate. Furthermore, controllers in this investigation are expected to
compute stationkeeping maneuvers from any location along their respective orbit – a condition that further complicates
a particular controller’s ability to consistently minimize overall fuel costs. While including domain-specific knowledge
in the training process often improves performance in specific applications, it limits applicability to other problems
and is, therefore, not included in this investigation. In this application, propellant consumption is considered as one of
many metrics when weighing the benefits of neural network control, and is not the only factor in selecting a particular
controller from a batch of trained agents.
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B. Maneuver Placements and Timing
The timing environment is leveraged to train a controller to select the location for the next maneuver along an orbit,

where the maneuver location decoding process is specified in Eq. (17). Again, many agents are trained in parallel,
and desirable agents are selected based on several factors, including deviation frequency, number of maneuvers per
revolution, and overall propellant consumption. Furthermore, empirical results demonstrate that timing agents tend to
converge on specific, repeating, patterns for placing maneuvers. Therefore, the neural network-suggested maneuver
sequences may be extracted from simulations and independently analyzed. In this investigation, rather than evaluating
the timing network directly in simulations, the computed patterns are employed directly. Initial analysis demonstrates
that replacing the neural network with its converged pattern does not degrade overall stationkeeping performance.
To illustrate the pattern identification process, a representative simulation of a converged timing agent along the 9:2

NRHO is plotted in Fig. 7. The episode begins with insertion and, thus, a maneuver is automatically implemented
at the initial state. As time progresses in this example, maneuvers fall into a repeating two-maneuver pattern, where
colors corresponding to 𝜉 may be correlated to locations along the 9:2 NRHO via Fig. 5(a), and the resulting pattern is
visualized in Fig. 8(a). Once identified, the repeating two-maneuver sequence, located by 𝜉, is directly employed in
simulations.

1. 9:2 NRHO Patterns
The timing agent is tasked with determining effective maneuver locations along the 9:2 NRHO leveraging a

frequently inaccurate neural network controller. Given random locations, this controller escapes from the reference
orbit in more than 20% of simulations. Several timing agents are trained in parallel, and two patterns are extracted
from two converged results, plotted in Figs. 8(a) and 8(b). These RL-generated patterns are then compared with an
apolune control strategy known to be effective for crossing control techniques [5], depicted in Fig. 8(c). Without a-priori
knowledge of this behavior, pattern (b) independently uncovers a similar apolune-placement strategy, demonstrating the
timing environment’s effectiveness in identifying suitable regions of space for maneuver placement.
A Monte Carlo analysis is implemented to evaluate the efficacy of the control strategy given the three specified

maneuver patterns, and results are summarized in the “9:2 NRHO” section of Table 3 for Figs. 8(a)–8(c). While the
agent frequently diverges given random locations, as implemented in the control training process, the stationkeeping
process is significantly stabilized with the identified patterns, successfully maintaining the orbit in more than 97.5%
and 95% of simulations for patterns (a) and (b), respectively In both cases, the mean annual stationkeeping cost is
approximately 2.3 m/s. This analysis is not intended to represent a practical mission scenario, as a 5% deviation
is likely an unacceptable level of error. Instead, this example illustrates the ability of the timing network training
process to identify regions of space where a control strategy is particularly ineffective, and place maneuvers elsewhere.
Furthermore, the performance difference between the RL-generated one maneuver pattern (b), and the known pattern (c),
illustrates the balance imposed during training between deviation and propellant consumption, where the RL-generated
pattern leads to lower-cost solutions that deviate more frequently.
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Fig. 7 Distance to the moon over time for a simulation along the 9:2 NRHO, where black circles indicate
locations of maneuvers, and color signifies locations along the NRHO, as depicted in Fig. 5(a).
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2. Butterfly Orbit Patterns
The butterfly orbit, depicted in Fig. 5(c), involves two passes of the Moon during each orbital period and, hence,

presents a challenge to the maneuver location selection process. As detailed in Eq. (7), location along the orbit is
represented by the angle 𝜉 and, in contrast to halo orbits, the two values 𝜉 = {0, 𝜋} represent separate apolunes. This
scenario tests the timing agent’s ability to ‘learn’ an effective pattern despite the more complex evolution of 𝜉 across one
orbital period.
A batch of agents is trained along the butterfly orbit, and three patterns are extracted from the resulting converged

solutions, depicted in Fig. 9. Patterns (a) and (b) involve four maneuvers per revolution, while (c) implements five.
Consistent with the NRHO results, each configuration exhibits a strong preference toward placing maneuvers near
apolune. Monte Carlo results leveraging these patterns are listed in the “Butterfly Orbit” section of Table 3. Notably, no
escapes occur in the Monte Carlo trials along any of the RL-generated maneuver sequences. Furthermore, each pattern
results in a significant annual cost reduction compared to the random maneuver locations employed during training. In
particular, pattern (a) possesses a mean annual stationkeeping cost of 18.4 m/s with no failure cases, compared to 35.6
m/s in the training example. Adding the additional maneuver in pattern (c) increases the overall cost, indicating that a
four-maneuver cadence is appropriate for this controller-orbit pair.

3. Halo Orbit Patterns
The halo orbit employed in this investigation, plotted in Fig. 5(b), is significantly more unstable than the NRHOs

and is, therefore, a basis for evaluating the maneuver selection process on a more numerically sensitive dynamical
structure. Different agents converge on four representative maneuver patterns, depicted in Fig. 10. Each scenario
involves 5 maneuvers per revolution, roughly evenly spaced in time. While a two-maneuver cadence is often employed
for halo orbits, the neural network’s performance indicates that additional maneuvers are necessary in this application.
Mission constraints coupled with the selected control strategy affect the maneuver frequency, as observed in the Genesis
mission where up to four maneuvers per orbital period of a Sun-Earth 𝐿1 halo orbit were necessary to avoid deviation
cases and satisfy mission requirements for the target point control scheme [37, 58]. As opposed to the NRHO and
butterfly orbit scenarios, no specific region of space is outright avoided in the RL-converged patterns, though each
pattern demonstrates a slight preference toward placing maneuvers closer to apolune than perilune. Each pattern spaces
maneuvers approximately equally in time. This placement strategy is consistent with Genesis, where distributing
maneuvers evenly in time was demonstrated as effective for the Sun-Earth 𝐿1 halo orbit [58].
Monte Carlo results for each pattern are specified in the “Halo Orbit: RL control” section of Table 3. Due to

overall similarity in the resulting patterns, annual cost remains relatively close between the four cases and, again, in
contrast to the NRHO and butterfly orbits, no significant reduction in stationkeeping cost is observed when compared to
random maneuver placements (though the total number of maneuvers is reduced from 5–15, to only 5). Of the four
included configurations, pattern (a) corresponds to the lowest annual cost of 17.01 m/s. No deviations occur in any of
the simulated configurations for the halo orbit scenario.

C. Maneuver Placement: 𝒙-axis Control
The timing network training process employs an arbitrary control policy and is, hence, applicable to neural networks

and traditional methods alike. To demonstrate this flexibility, an 𝑥-axis control scheme for low-thrust is implemented
following the process detailed by Newman et al. [35]. To evaluate the RL approach, the timing network is tasked with
computing 𝑥-axis control maneuver sequences along the 𝐿2 southern halo orbit plotted in Fig. 5(b). Three representative
patterns are produced from RL timing agents, and are illustrated in Figs. 11(a)–11(c). The fourth pattern, Fig. 11(d),
represents a two-maneuver cadence that alternates between perilune and apolune. This alternating sequence, with
additional maneuvers performed at 𝑦-max amplitudes, was employed in the ARTEMIS mission [38], and is further
demonstrated by Davis et al. in an impulsive 𝑥-axis control application applied along a similar halo orbit [34]. The
inclusion of a known maneuver schedule provides a useful comparison for the RL-generated pattern results.
Each scenario implements two maneuvers per revolution, and Monte Carlo results are detailed in Table 3 in the

section titled “Halo Orbit: 𝑥-axis control”. Each RL-generated sequence yields lower annual stationkeeping costs, and
higher a success percentage, compared to the simple perilune-apolune alternating scheme in Fig. 11(d), with pattern (a)
resulting in a mean annual cost of 20 cm/s. Costs are, as expected, notably lower than the RL controller for the same
halo orbit, though the computational footprint is two orders of magnitude higher. Despite the large variation between
these control schemes, the timing training process is, nevertheless, able to produce effective maneuver sequences for
their respective controllers, demonstrating the flexibility of the proposed maneuver sequencing approach, and suggests
future applicability to alternative control techniques.
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Fig. 8 RL-generated patterns (blue) and the apolune pattern suggested in [5] (red), for a neural network
controller along the 9:2 synodic resonant southern NRHO (�̂�-𝒛, nondim)
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Fig. 9 Neural network control patterns, produced via RL, along the sample butterfly orbit.
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Fig. 10 Sample uncovered patterns for a neural network controller in the sample halo orbit mission scenario
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control scheme along the sample destination halo orbit (�̂�-𝒛, nondim)
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D. Multi-Period Patterns
While the majority of the timing agents converge on patterns that repeat every revolution, several cases arise where

an agent produces maneuver location sequences that repeat at period multiples. Two such patterns are depicted in
Fig. 12 and Fig. 13, where the former repeats every two periods along the NRHO leveraging an RL controller, and
the latter repeats every three periods of the halo orbit employing an 𝑥-axis control scheme. Monte Carlo simulation
results for each pattern are listed in Table 3, demonstrating that both cases are equal to, or better than, other uncovered
maneuver sequences in both success percentage and annual cost (though neither performs dramatically better). These
non-homogeneous patterns demonstrate the neural networks’ ability to uncover and estimate more complex maneuver
arrangements, and suggest this methodology is applicable in more challenging domains where such complexity is
beneficial for the given problem.
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Fig. 12 Sample non-homogeneous RL-generated maneuver pattern for an RL controller along the 9:2 NRHO
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Fig. 13 Maneuver sequence that repeats for every three periods of the sample halo orbit, employing an 𝒙-axis
control scheme

20



Table 3 Monte Carlo results with 200 simulations and 25 orbit periods for each cislunar orbit plotted in Fig. 2,
where “success” indicates the controller did not deviate from the reference orbit. In cases where RL-control is
employed, “Training” indicates the random maneuver location selection process that is employed during training
of the RL controller.

Pattern
Fig. No.

Δ𝑉 /
Rev.

Success
Pct.

Annual Cost Pattern

𝜇, m/s 𝜎, m/s 𝜉, rad
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Training 1–3 79.5% 5.66 1.37 Random

Fig. 8(a) 2 97.5% 2.32 1.78 [3.9291, 5.4982]

Fig. 8(b) 1 95% 2.35 0.76 [0.7741]

Fig. 8(c) 1 98% 3.16 0.83 [0]

Fig. 12 3,1 98% 2.32 0.76 [2.3545, 3.9756, 5.1958, 5.4999]
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l Training 5–15 98.5% 35.60 5.05 Random

Fig. 9(a) 4 100% 18.40 0.62 [0.7833, 2.2087, 3.6375, 5.4107]

Fig. 9(b) 4 100% 21.76 3.79 [0.7858, 2.1442, 2.9305, 5.4986]

Fig. 9(c) 5 100% 28.33 1.78 [0.7854, 2.3570, 3.9278, 5.3160, 6.2392]
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Training 5–15 100% 20.18 1.80 Random

Fig. 10(a) 5 100% 17.01 0.91 [1.5419, 2.4496, 3.4051, 4.8138, 6.0126]

Fig. 10(b) 5 100% 22.41 0.97 [0.5345, 1.9185, 3.1408, 4.4414, 5.6436]

Fig. 10(c) 5 100% 19.33 1.39 [1.3195, 2.7830, 3.8332, 4.6227, 6.0247]

Fig. 10(d) 5 100% 23.71 0.99 [1.2235, 2.3373, 3.7519, 4.6194, 5.7684]
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Fig. 11(a) 2 100% 0.20 0.030 [1.0233, 4.9817]

Fig. 11(b) 2 100% 0.23 0.036 [2.8031, 5.5979]

Fig. 11(c) 2 99.5% 0.21 0.042 [0.7854, 3.9270]

Fig. 11(d) 2 99.0% 0.24 0.040 [0, 𝜋]

Fig. 13 2,2,2 100% 0.20 0.025 [2.3562, 4.3136, 2.3562, 4.3136, 1.4497, 5.3210]

21



VI. Concluding Remarks
Reinforcement learning offers a powerful approach for uncovering insight in support of stationkeeping for timing

and control along challenging, nonlinear multi-body orbits. This investigation offers a general approach for training
a neural network stationkeeping controller that does not rely on individual orbit characteristics or domain-specific
knowledge. Furthermore, reinforcement learning is demonstrated as remarkably effective in determining maneuver
placement strategies for neural network and 𝑥-axis control methods alike, suggesting future applicability for complex
destination orbits and alternative control schemes. While computational efficiency and accuracy motivate neural network
control applications, further research is necessary to address current propellant consumption limitations. Onboard
stationkeeping planning will enable future spacecraft to operate autonomously, and neural networks provide an exciting
component in facilitating autonomy despite challenging nonlinear regions of space.

Appendix

A. Parameter Selection
Parameter selection and tuning is an important aspect in both TD3 learning and RL environment design.

Well-performing agents may be produced with different combinations of parameters. Suggested values employed in this
research are summarized in Table 4. Furthermore, the specific configurations of the employed neural networks are listed
in Table 5. These networks are implemented using TensorFlow [59].

Table 4 Suggested parameter values for RL and environment configurations

Variable name Symbol Equations Suggested values
Discount factor 𝛾 Eqs. (5) and (6) 0.99
Actor Learning Rate 0.0001
Critic Learning Rate 0.001
Reward constant 𝑐 Eqs. (16) and (18) 0–1
Reward divergence penalty 𝑝 Eqs. (16) and (18) -10
Reward control penalty coefficient 𝛼 Eqs. (16) and (18) 0–1
Timing reward coasting coefficient 𝛽 Eq. (18) 0.1–5 (> 𝛼)
Maximum thrusting time 𝜏max Eq. (15) 1–3 hrs

Table 5 Configuration of actor and critic neural networks employed in this investigation.

Control Actor Control Critic Timing Actor Timing Critic
Layer name Size Activation Size Activation Size Activation Size Activation
Input layer 15 - 15 - 15 - 15 -
Hidden 1 400 ReLU 400 ReLU 400 ReLU 400 ReLU
Hidden 2 300 ReLU 300 ReLU 300 ReLU 300 ReLU
Output 5 tanh 1 linear 2 tanh 1 linear
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